
International Journal of Computer Trends and Technology Volume 72 Issue 6, 118-125, June 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I6P116 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Optimizing Data Ingestion Processes using a Serverless

Framework on Amazon Web Services

Rajesh Remala1, Krishnamurty Raju Mudunuru2, Sevinthi Kali Sankar Nagarajan3

1,2,3Independent Researcher, San Antonio, Texas, USA.

1Corresponding Author : rajeshremala@gmail.com

Received: 13 April 2024 Revised: 19 May 2024 Accepted: 11 June 2024 Published: 29 June 2024

Abstract - This paper presents a novel approach to data ingestion leveraging serverless architecture on Amazon Web Services

(AWS). Traditional data ingestion methods often face challenges such as scalability limitations and high operational

overhead. In contrast, serverless computing offers a promising solution by abstracting infrastructure management and scaling

resources dynamically based on demand. We demonstrate the effectiveness of our approach through experimentation and

performance evaluation. Results show significant improvements in scalability, resource utilization, and cost efficiency

compared to traditional approaches. Additionally, we discussed the design considerations, implementation details, and best

practices for deploying and managing the serverless data ingestion framework on AWS. Overall, our framework provides a

robust solution for efficiently ingesting data into cloud environments, offering benefits in terms of scalability, flexibility, and

cost-effectiveness. By utilizing serverless architecture, the framework enables automatic scaling and resource provisioning,

reducing operational overhead and optimizing costs.

Keywords - Amazon Web services, Cost-Effectiveness, Data ingestion, Framework, Serverless, Scalability.

1. Introduction
The development of a serverless data ingestion

framework on AWS presents a compelling solution for

organizations seeking efficient and cost-effective ways to

ingest, process, and store large volumes of data. By

leveraging, this framework eliminates the need for

provisioning and managing infrastructure, thereby reducing

operational complexity and costs. This paper aims to

introduce and explore the architecture, components, and

benefits of a serverless data ingestion framework deployed

on AWS. Through a comprehensive examination, including

case studies and performance evaluations, we demonstrate

the effectiveness and scalability of this framework in

handling diverse data ingestion scenarios. Overall, the

serverless data ingestion framework on AWS offers a

promising approach for organizations while minimizing

overhead and maximizing efficiency. Traditional data

ingestion approaches often involve managing complex

infrastructure, which can be costly, time-consuming, and

resource-intensive. In this context, this paper introduces a

novel Serverless Data Ingestion Framework designed

specifically for Amazon Web Services. The framework

streamlines the process of ingesting, processing, and storing

data without the need for managing servers or infrastructure.

AWS Glue stands out as a fully at its core, AWS Glue

comprises essential components, including the AWS Glue

Data Catalog, acting as a central metadata repository. This

Data Catalog seamlessly replaces an Apache Hive metastore,

offering enhanced functionality (further details are available

in the Catalog and search section of this document).

Additionally, AWS Glue incorporates an ETL job system,

automating the generation of Python and Scala code while

effectively managing ETL job processes. Illustrated below is

a high-level depiction of the architectural framework

characterizing an AWS Glue environment.

2. Review of Literature
The emergence of serverless computing has

revolutionized the way organizations handle data processing

tasks in the cloud. With the advent of serverless

architectures, such as those offered by Amazon Web

Services (AWS), organizations can now streamline their data

ingestion processes while minimizing operational overhead

and infrastructure costs. Several studies have highlighted the

benefits of serverless computing in the context of data

ingestion frameworks. A comparative analysis of serverless

and traditional data ingestion approaches demonstrating that

serverless architectures offer superior scalability, reliability,

and cost-effectiveness. By leveraging AWS Lambda,

Amazon Kinesis, and Amazon S3, organizations can

automate the data ingestion process, allowing for seamless

scalability and efficient resource utilization [1-4]. The

performance characteristics of serverless data ingestion

frameworks on AWS focus on factors such as throughput,

latency, and cost.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Rajesh Remala et al. / IJCTT, 72(6), 118-125, 2024

119

Fig. 1 AWS glue framework

Level of Code Function to store Processed Data in

Amazon S3.

Their findings revealed that serverless architectures

exhibit excellent scalability and reliability, making them

well-suited for handling large volumes of data in real time.

The security implications of serverless data ingestion

frameworks emphasise the importance of implementing

robust authentication and access control mechanisms. In

addition to academic research, several industry reports and

case studies have highlighted the successful implementation

of serverless data ingestion frameworks on AWS [14, 16]. A

case study demonstrated how AWS services are leveraged to

build a serverless data ingestion pipeline, resulting in

significant cost savings and operational efficiencies. Overall,

the literature suggests that serverless data ingestion

frameworks on Amazon Web Services offer a scalable, cost-

effective, and streamlined approach to handling data

processing tasks in the cloud. By automating the ingestion

process and leveraging AWS's robust infrastructure,

organizations can unlock the full potential of their data assets

while minimizing complexity and overhead. Within the

realm of data processing, serverless architectures present

significant opportunities for streamlining data ingestion

workflows and enabling efficient processing of large

volumes of data. A comparative study evaluating serverless

data processing frameworks on AWS, Google Cloud

Platform, and Microsoft Azure [10]. Their findings

highlighted the advantages of serverless architectures, such

as data ingestion, serverless frameworks have gained traction

for their ability to handle diverse data sources and formats

Function to store processed data in Amazon S3

def store_data_s3(data):
 # Initialize AWS S3 client

 s3 = boto3.client('s3')

 # Define bucket and object key

 bucket_name = 'your-bucket-name'

 object_key = 'path/to/processed/data.json'

 # Store data in S3 bucket

 s3.put_object(Bucket=bucket_name, Key=object_key,
Body=json.dumps(data))

Function to trigger downstream processing

def trigger_processing(data):
 # Initialize AWS Lambda client

 lambda_client = boto3.client('lambda')

 # Define parameters for downstream processing Lambda

function

 function_name = 'your-downstream-processing-function'
 invocation_payload = {

 'data': data

 }

 # Invoke downstream processing Lambda function
 lambda_client.invoke(

 FunctionName=function_name,

 InvocationType='Event',
 Payload=json.dumps(invocation_payload)

)

Aws Management

console

Data Catalog

Crawler

Data stores

Job
Data Source

Extract
Transform

Script

Load

Data Target

Rajesh Remala et al. / IJCTT, 72(6), 118-125, 2024

120

efficiently. A serverless data ingestion framework for IoT

applications, leveraging AWS Lambda and Amazon Kinesis

to process real-time streaming data [7-8]. Their framework

demonstrated improved security, scalability, and reduced

latency compared to traditional approaches [13].

Furthermore, research has emphasized the importance of

leveraging managed services provided by cloud providers

like AWS for building serverless data ingestion pipelines. A

serverless data ingestion pipeline using AWS services,

including AWS Lambda, AWS Glue, and Amazon S3, for

processing and analyzing large datasets [11,15]. Their study

highlighted the benefits of using managed services for data

integration, data quality, transformation, and storage [9].

Despite the benefits, challenges remain in adopting serverless

data ingestion frameworks, including cold start latency,

resource limitations, and vendor lock-in concerns. To address

these challenges, researchers have proposed optimization

techniques and best practices for designing efficient

serverless architectures [12]. The literature underscores the

growing interest and adoption of serverless computing in

data processing workflows [5]. As organizations increasingly

migrate to the cloud and seek scalable, cost-effective

solutions for data ingestion, serverless frameworks offer a

compelling approach to meet these demands [6]. This paper

contributes to this body of literature by introducing a novel

Serverless Data Ingestion Framework tailored for Amazon

Web Services, offering organizations a streamlined and

efficient solution for ingesting and processing data in the

cloud.

2.1. Study of Objectives

2.1.1. Simplifying the data ingestion Process

By leveraging serverless computing, organizations can

eliminate the need for manual infrastructure provisioning and

configuration, thereby reducing operational overhead and

accelerating time-to-value.

2.1.2. Ensuring scalability and reliability

The framework leverages AWS services' inherent

scalability and fault tolerance to handle large volumes of data

efficiently, ensuring high availability and reliability.

2.1.3. Optimizing Cost Effectiveness

Serverless architectures enable organizations to pay only

for the resources they consume, leading to cost savings

compared to traditional, resource-based pricing models.

3. Research and Methodology
The research methodology outlined above provides a

systematic framework for investigating the optimization of

data ingestion processes using a serverless framework on

Amazon Web Services. By employing a mixed-methods

approach and leveraging various data collection and

analytical techniques, the study proposes the direction of

generating appreciated perceptions besides hands-on

endorsements aimed at establishments looking to influence

serverless architectures aimed at data ingestion tasks.

Table 1 provides technical details of the different

approaches, including the application developed using Play-

Framework and the platforms on which they were deployed:

AWS EC2 and AWS Lambda.

Table 1. Technical details of the different approaches

Application
Developed

(using)
Deployed On

Monolith Play-Framework AWS EC2

Microservice Play-Framework AWS EC2

AWS Lambda Node.js AWS Lambda

Fig. 2 Scenario based cost analysis

The study examined to determine consequences,

managed S1 20% of the workload, while S2 handled 80%. In

the third scenario, the workload distribution was reversed

whereas in the second scenario distributed across both

services.

Fig. 3 Average response time for service (s1) during peak periods;

(adapted from [VGO+16])

 Fig. 4 Average response time for service (s2) during peak periods

(adapted from [VGO+16])

Rajesh Remala et al. / IJCTT, 72(6), 118-125, 2024

121

The improvement in response time ranges disparity

arises because all requests for both services must traverse the

same gateway, which distributes requests to the respective

services [VGO+16]. Consequently, this gateway becomes a

bottleneck as it is not optimized for handling high request

volumes. The AWS Lambda architecture offers even greater

benefits by significantly reducing costs while maintaining

relatively stable response times.

Regarding AWS Lambda functions, due to the dynamic

CPU allocation, two distinct configurations are employed in

separate tests. The initial configuration assigns 1024 MB of

RAM to the functions.

Deploying applications on Amazon Web Services

(AWS) Elastic Compute Cloud (EC2) involves several steps

to ensure a seamless and efficient deployment process. AWS

EC2 offers scalable computing capacity in the cloud,

allowing users to deploy applications quickly and easily. The

following overview outlines the deployment process on

AWS EC2:

Configuration: The deployment process begins with

configuring the AWS EC2 instance. Users can choose from

various instance types, each offering different computing

resources such as CPU, memory, storage, and networking

capacity. Additionally, users can select the operating system

and other configuration settings based on their application

requirements.

Instance Launch: Once the configuration is complete,

the next step is to launch the EC2 instance. Users can launch

one or multiple instances simultaneously, depending on the

scalability needs of their application. During the instance

launch, users can specify additional parameters such as

security groups, key pairs, and IAM roles to control access

and security settings.

Instance Initialization: After the instance is launched, it

undergoes initialization, which involves setting up the

operating system, installing necessary software

dependencies, and configuring networking settings. Users

can connect to the instance using SSH or RDP protocols to

perform further configuration and customization tasks.

Application Deployment: With the instance initialized,

users can deploy their applications onto the EC2 instance.

This typically involves transferring application files and

dependencies to the instance using secure transfer protocols

such as SCP or SFTP. Users can also leverage deployment

tools and frameworks such as AWS Code Deploy or AWS

Elastic Beanstalk for automated deployment processes.

Testing and Validation: Once the application is

deployed, it undergoes testing and validation to ensure

proper functionality and performance. Users can run

automated tests, conduct manual validation, and monitor

application metrics to identify any issues or performance

bottlenecks.

Load Balancing and Scaling: For applications requiring

high availability and scalability, users can configure.

Monitoring and Optimization: After deployment,

ongoing monitoring and optimization are essential to

maintain application performance and cost-efficiency. Users

can leverage AWS CloudWatch to monitor instance metrics

and set up alarms for critical events.

By following these steps, users can deploy applications

on AWS EC2 effectively, leveraging the scalability,

reliability, and flexibility of the AWS cloud infrastructure to

meet their business needs.

Process data (e.g., transform, clean)

Import necessary libraries and AWS SDK
import boto3

import json

Define function to handle data ingestion
def data_ingestion(event, context):

 # Extract data from event

 data = event['data']

 processed_data = process_data(data)

 # Store processed data in Amazon S3

 store_data_s3(processed_data)
 # Trigger downstream processing (optional)

 trigger_processing(processed_data)

 # Return success response
 return {

 'statusCode': 200,

 'body': json.dumps('Data ingestion successful')
 }

Function to process incoming data

def process_data(data):
 # Perform data processing tasks (e.g., transformation, validation)

 processed_data = data

 return processed_data

Function to store processed data in Amazon S3

def store_data_s3(data):
 # Initialize AWS S3 client

 s3 = boto3.client('s3')

 # Define bucket and object key

 bucket_name = 'your-bucket-name'

 object_key = 'path/to/processed/data.json'

 # Store data in S3 bucket

 s3.put_object(Bucket=bucket_name, Key=object_key,
Body=json.dumps(data))

Function to trigger downstream processing

def trigger_processing(data):
 # Initialize AWS Lambda client

 lambda_client = boto3.client('lambda')

 # Define parameters for downstream processing Lambda

function

 function_name = 'your-downstream-processing-function'
 invocation_payload = {

 'data': data

 }

 # Invoke downstream processing Lambda function

 lambda_client.invoke(
 FunctionName=function_name,

 InvocationType='Event',

 Payload=json.dumps(invocation_payload)
)

Rajesh Remala et al. / IJCTT, 72(6), 118-125, 2024

122

USERS

AMAZON RDS
t2.medium

S3 STORAGE

Amazon Web Services

AWS Autoscaling group

API GATEWAY

APP

EC2

m4.xlarge
Instance 3

APP

EC2

m4.xlarge
Instance 1

Fig. 5 Deployment overview on AWS EC2

USERS

AMAZON RDS
t2.medium

S3 STORAGE

Amazon Web Services

AWS Lambda

API GATEWAY

Function 1

Function X

Fig. 6 Deployment overview on AWS Lambda

Rajesh Remala et al. / IJCTT, 72(6), 118-125, 2024

123

AMAZON RDS S3 STORAGE

App

Test Application

BW Cloud
Amazon Web Services

Prometheus
Push Gateway

GATLING

PROMETHEUS GRAFANA

Fig. 7 Overview over the complete test

Deploying applications on making it ideal for building

scalable and cost-effective applications. The following

overview outlines the deployment process on AWS Lambda:

Code Preparation: The deployment process begins with

preparing the code for deployment to AWS Lambda, Python,

or C#, besides packaging it along with any necessary

dependencies into a deployment package.

Function Configuration: After creating the Lambda

function, developers configure additional settings such as

environment variables, resource permissions, and event

triggers. Environment variables can be used to pass

configuration parameters to the function, while resource

permissions define the AWS services and resources the

function can access.

Deployment: With the Lambda function configured,

developers deploy the function to the Testing: After

deployment, developers can test the Lambda function to

ensure it behaves as expected. AWS Lambda provides a

testing interface where developers can invoke the function

manually and view the results. Developers can also set up

automated tests using AWS Lambda's integration with AWS

Code Pipeline or other testing frameworks.

Monitoring and Logging: Once deployed, developers

can monitor the performance and health of the Lambda

function using AWS CloudWatch. CloudWatch provides

metrics, logs, and alarms that help developers track function

invocations, errors, and performance metrics. Developers can

set up custom metrics and alarms to alert them of any issues

or anomalies.

AWS Lambda automatically provisions and scales

resources to handle incoming traffic, ensuring high

availability and performance without manual intervention.

By following these steps, developers can deploy applications

on AWS Lambda efficiently, taking advantage of the

serverless computing model to build scalable, cost-effective,

and low-maintenance applications.

In the first configuration, functions are allocated 1024

MB of memory to conduct their own health checks before

forwarding requests to the new instance, adding another 30

seconds to the process. Additionally, the time required for

data measurement, scaling decisions, and monitoring the

impact of scaling measures must also be considered.

3.1. Findings

3.1.1. Increased Scalability

The implementation of a serverless data ingestion

framework on Amazon Web Services (AWS) has

demonstrated significant improvements in scalability. The

framework effectively handles varying workloads and data

volumes, ensuring seamless performance during peak

periods.

3.1.2. Cost Efficiency

By leveraging serverless technologies on AWS,

organizations can achieve cost savings compared to

traditional infrastructure setups. The pay-as-you-go model

minimizes overhead costs associated with maintaining and

scaling infrastructure, leading to more efficient resource

utilization.

Rajesh Remala et al. / IJCTT, 72(6), 118-125, 2024

124

3.1.3. Enhanced Flexibility

The serverless architecture of the data ingestion

framework offers greater flexibility in deploying and

managing data pipelines. It allows for rapid development and

deployment of new data processing workflows, enabling

organizations to adapt to changing business requirements

more effectively.

3.1.4. Improved Time to Market

With serverless technologies, organizations can expedite

the development and deployment of data ingestion pipelines.

This accelerated time-to-market enables faster access to

insights and analytics, empowering decision-making

processes.

3.2. Suggestions

3.2.1. Implement Monitoring and Alerting

Set up performance bottlenecks, errors, then anomalies

within the data ingestion framework. Leverage AWS to gain

insights into system behavior and performance metrics.

3.2.2. Enhance Security Measures

Strengthen audit access logs to ensure compliance with

data protection regulations.

3.2.3. Embrace Serverless Best Practices

Adhere to serverless best practices such as leveraging

managed services, minimizing cold starts, optimizing

function size and memory allocation, and implementing

idempotent operations to maximize efficiency and reliability.

4. Conclusion
In the decision, the implementation of a serverless data

ingestion framework on Amazon Web Services (AWS)

offers a myriad of benefits for organizations seeking efficient

and scalable data processing solutions. Through the

utilization of AWS Lambda, Amazon S3, and other

serverless services, organizations can achieve enhanced

scalability, cost efficiency, and flexibility in managing data

pipelines.

The findings of this framework demonstrate the

effectiveness of serverless architectures in handling varying

workloads and enabling rapid deployment of data processing

workflows. “As Per Dr.Naveen Prasadula Furthermore”, the

suggestions provided offer insights into optimizing resource

allocation, enhancing security measures, and embracing

serverless best practices to maximize the performance and

reliability of the data ingestion framework. As organizations

continue to harness the power of serverless computing on

AWS, it is imperative to remain vigilant in monitoring

performance metrics, addressing security concerns, and

refining operational processes. With the right approach and

strategic implementation, a serverless data ingestion

framework on AWS can empower organizations to unlock

new insights, drive informed decision-making, and accelerate

their journey towards digital transformation.

Funding Statement
This research was entirely Self-funded by the Author’s.

References
[1] Omar Al-Debagy, and Peter Martinek, “A Comparative Review of Microservices and Monolithic Architectures,” 2018 IEEE 18th

International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary, pp. 000149-000154, 2018.

[CrossRef] [Google Scholar] [Publisher Link]

[2] Werner Vogels, AWS re: Invent 2018-Keynote, 2018. [Online]. Available: https://amzn.to/2FKc7zk

[3] Josef Spillner, “Quantitative Analysis of Cloud Function Evolution in the AWS Serverless Application Repository,” ArXiv preprint,

2019. [CrossRef] [Google Scholar] [Publisher Link]

[4] Peter Sbarski, and Sam Kroonenburg, “Serverless Architectures On AWS: With Examples Using AWS Lambda,” Simon and Schuster,

2017. [Google Scholar] [Publisher Link]

[5] Garrett McGrath, and Paul R. Brenner, “Serverless Computing: Design, Implementation, and Performance,” 2017 IEEE 37th

International Conference on Distributed Computing Systems Workshops (ICDCSW), Atlanta, GA, USA, pp. 405-410, 2017. [CrossRef]

[Google Scholar] [Publisher Link]

[6] V. Giménez-Alventosa, Germán Moltó, and Miguel Caballer, “A Framework and A Performance Assessment for Serverless Mapreduce

on AWS Lambda,” Future Generation Computer Systems, vol. 97, pp. 259-274, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[7] Scott Patterson, “Learn AWS Serverless Computing: A Beginner’s Guide to Using AWS Lambda, Amazon API Gateway, And Services

from Amazon Web Services,” Packt, 2019. [Google Scholar] [Publisher Link]

[8] Danilo Poccia, “AWS Lambda in Action: Event-Driven Serverless Applications,” Simon and Schuster, 2016. [Google Scholar]

[Publisher Link]

[9] D. Marupaka and S. Rangineni, “Machine Learning-Driven Predictive Data Quality Assessment in ETL Frameworks," International

Journal of Computer Trends and Technology, vol. 72, no. 3, pp. 53-60, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[10] R. Arokia Paul Rajan, “Serverless Architecture - A Revolution in Cloud Computing,” 2018 Tenth International Conference on

Advanced Computing (ICoAC), Chennai, India, pp. 88-93, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[11] John Chapin, and Mike Roberts, “Programming AWS Lambda: Build and Deploy Serverless Applications with Java,” O'Reilly Online

Learning, 2020. [Google Scholar] [Publisher Link]

https://doi.org/10.1109/CINTI.2018.8928192
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comparative+Review+of+Microservices+and+Monolithic+Architectures&btnG=
https://ieeexplore.ieee.org/document/8928192
https://doi.org/10.48550/arXiv.1905.04800
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Quantitative+Analysis+of+Cloud+Function+Evolution+in+the+AWS+Serverless+Application+Repository&btnG=
https://arxiv.org/abs/1905.04800
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Serverless+Architectures+On+AWS%3A+With+Examples+Using+AWS+Lambda&btnG=
https://www.simonandschuster.com/books/Serverless-Architectures-on-AWS/Peter-Sbarski/9781638351146
https://doi.org/10.1109/ICDCSW.2017.36
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Serverless+Computing%3A+Design%2C+Implementation%2C+and+Performance&btnG=
https://ieeexplore.ieee.org/document/7979855
https://doi.org/10.1016/j.future.2019.02.057
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Framework+and+A+Performance+Assessment+for+Serverless+Mapreduce+on+AWS+Lambda&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X18325172?via%3Dihub
https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&as_vis=1&q=Learn+AWS+Serverless+Computing%3A+A+Beginner%27s+Guide+to+Using+AWS+Lambda%2C+Amazon+API+Gateway%2C+and+Services+from+Amazon+Web+Services&btnG=
https://www.packtpub.com/en-es/product/learn-aws-serverless-computing-9781789958355
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AWS+Lambda+in+Action%3A+Event-Driven+Serverless+Applications&btnG=
https://www.simonandschuster.co.uk/books/AWS-Lambda-in-Action/Danilo-Poccia/9781638352051
https://doi.org/10.14445/22312803/IJCTT-V72I3P108
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning-Driven+Predictive+Data+Quality+Assessment+in+ETL+Frameworks&btnG=
https://ijcttjournal.org/archives/ijctt-v72i3p108
https://doi.org/10.1109/ICoAC44903.2018.8939081
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Serverless+architecture-a+revolution+in+cloud+computing&btnG=
https://ieeexplore.ieee.org/abstract/document/8939081
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Programming+AWS+Lambda%3A+Build+and+Deploy+Serverless+Applications+with+Java%2C&btnG=
https://www.oreilly.com/library/view/programming-aws-lambda/9781492041047/

Rajesh Remala et al. / IJCTT, 72(6), 118-125, 2024

125

[12] Sandeep Rangineni, and Arvind Kumar Bhardwaj, “Analysis of DevOps Infrastructure Methodology and Functionality of Build

Pipelines,” EAI Endorsed Transactions on Scalable Information Systems, vol. 11, no. 4, pp. 1-8, 2024. [CrossRef] [Google Scholar]

[Publisher Link]

[13] Naga Simhadri Apparao Polireddi et al., “A Novel Study on Data Science for Data Security and Data Integrity with Enhanced Heuristic

Scheduling in Cloud,” 2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS), Pudukkottai,

India, pp. 1862-1868, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[14] Changyuan Lin, and Hamzeh Khazaei, “Modeling and Optimization of Performance and Cost of Serverless Applications,” IEEE

Transactions on Parallel and Distributed Systems, vol. 32, no. 3, pp. 615-632, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[15] Sudhakar Kalyan, “Amazon Web Services (AWS) Glue,” International Journal of Management, IT and Engineering, vol. 8, no. 9, pp.

108-122, 2018. [Google Scholar] [Publisher Link]

[16] Daniel Bardsley, Larry Ryan, and John Howard, “Serverless Performance and Optimization Strategies,” 2018 IEEE International

Conference on Smart Cloud (SmartCloud), New York, USA, pp. 19-26, 2018. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.4108/eetsis.4977
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+of+DevOps+Infrastructure+Methodology+and+Functionality+of+Build+Pipelines&btnG=
https://publications.eai.eu/index.php/sis/article/view/4977
https://doi.org/10.1109/ICACRS58579.2023.10404262
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Novel+Study+on+Data+Science+for+Data+Security+and+Data+Integrity+with+Enhanced+Heuristic+Scheduling+in+Cloud%2C%22+2023+2nd+International+Conference+on+Automation%2C+Computing+and+Renewable+Systems+%28ICACRS%29%2C+Pudukkottai%2C+India&btnG=
https://ieeexplore.ieee.org/document/10404262
https://doi.org/10.1109/TPDS.2020.3028841
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modeling+and+Optimization+of+Performance+and+Cost+of+Serverless+Applications&btnG=
https://ieeexplore.ieee.org/document/9214428
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Amazon+web+services+%28aws%29+glue%2C%22+International+Journal+of+Management&btnG=
https://www.indianjournals.com/ijor.aspx?target=ijor:ijmie&volume=8&issue=9&article=007
https://doi.org/10.1109/SmartCloud.2018.00012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Serverless+Performance+and+Optimization+Strategies&btnG=
https://ieeexplore.ieee.org/document/8513710

